首页 | 本学科首页   官方微博 | 高级检索  
     

基于PNN网络和Freeman链码的抽油机井工况诊断
引用本文:肖维民,梁波. 基于PNN网络和Freeman链码的抽油机井工况诊断[J]. 应用声学, 2015, 23(6)
作者姓名:肖维民  梁波
作者单位:安徽工业大学 计算机学院,安徽工业大学 计算机学院
基金项目:国家自然科学基金资助项目(61003311);安徽省高校省级自然科学基金资助项目(KJ2011A040)
摘    要:利用概率神经网络(PNN)对抽油机井工况进行诊断,建立了抽油机井工况诊断的概率神经网络模型。对示功图提取特征值的质量好坏直接影响识别效率和可靠性,提出了用Freeman链码对等效的电流示功图提取特征参数,进行预处理,建立抽油机典型工况的链码特征样本库。将Freeman链码作为特征向量,利用MATLAB对网络进行训练。结果表明,Freeman链码能够有效的识别各种典型工况示功图,并且该概率神经网络学习速度快、诊断准确率高,可用于抽油机井工况的实时监测和诊断。

关 键 词:概率神经网络  工况诊断  示功图  Freeman链码  MATLAB

Working Condition Diagnosis of Pumping Unit Based on PNN and Freeman Chain Code
Affiliation:Department of Computer Science,Anhui University of Technology,
Abstract:A probabilistic neural network was used to diagnose the working conditions of pumping unit. This paper attempts to feature extraction parameters through the equivalent current indictor diagram by the Freeman chain code, establish typical operating conditions pumping characteristic parameters of sample chain code libraries, to solve the effects of the accuracy of indicator diagram"s eigenvalue. Use Freeman chain code as a feature vector, the model of probabilistic neural network was set up and trained by MATLAB. The results show that Freeman chain-code can effectively identify a variety of typical working condition indicator diagrams, and this network features fast learning, high diagnostic accuracy for real time detection and diagnostics of pumping unit operating conditions.
Keywords:probabilistic neural network   working condition diagnosis   indicator diagram   Freeman chain-code   MATLAB
点击此处可从《应用声学》浏览原始摘要信息
点击此处可从《应用声学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号