首页 | 本学科首页   官方微博 | 高级检索  
     


A Computational Study of 3‐D Helium Clusters
Authors:Hassan Sabzyan  Farzaneh Zanjanchi
Affiliation:Department of Chemistry, University of Isfahan, Isfahan, 81746–73441, I. R. Iran
Abstract:Physical and thermodynamic properties have been calculated and analyzed for the best and optimized geometries of the 3‐D clusters with N = 3 to N = 10 atoms and unit cells of three types of crystalline systems using ab initio RHF/6–31G** method. Dependence of the lattice binding energy on the cluster parameter, R, has been studied. Similar behavior observed for the binding energies for all clusters shows that probabilities of their existence in the condensed phase are more or less the same. In the next step, thermodynamic properties have been calculated and analyzed for He27 3‐D helium clusters with simple cubic, body centered cubic (bcc), trigonal and hexagonal (hcp) configurations. The results show that the hexagonal cluster is more favored over other clusters. It is found that these clusters are electronically stable over a limited range of the values for the lattice parameter. ΔfH is constant in this stability region and thus the ΔfG exactly follows the variations of TΔfS. Surface effects have been investigated by comparing the square and hexagonal He9 2‐D lattices with the cubic and hexagonal He27 3‐D lattices, respectively. The lattice parameters, densities and molar volumes calculated for the clusters with hcp and bcc configurations have satisfactory agreement with the available experimental values. Properties of the He13, He34 and He104 hcp clusters have also been calculated and analyzed.
Keywords:Helium  Cluster  3‐D  Ab initio  hcp  bcc  Density
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号