首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The Direct Electron Transfer of Iron‐Containing Superoxide Dismutase (Fe‐SOD) and its Catalysis for the Oxygen Reduction Reaction (ORR) in Room Temperature Ionic Liquids (RTILs) on a Gold Electrode
Authors:Ke‐Qiang Ding
Institution:Chemistry & Material Science College, Hebei Teacher's University, Shijiazhuang 050016, P. R. China
Abstract:In this work, for the first time, the direct electron transfer of iron‐containing superoxide dismutase (Fe‐SOD) was observed by cyclic voltammetry on a gold (Au) electrode in three RTILs, i.e., 1‐ethyl‐3‐methylimidazolium tetrafluoroborate (EMIBF4), 1‐n‐propyl‐3‐methylimidazolium tetrafluoroborate (PMIBF4) and 1‐n‐butyl‐3‐methylimidazolium tetrafluoroborate (BMIBF4). And the results demonstrate that when the scan rate was as low as 1 mV/s, a pair of well‐defined quasi‐reversible peaks of Fe‐SOD was presented, while as the potential scan rate was above 10 mV/s, the reduction peak of Fe‐SOD disappeared though its oxidation peak could be clearly observed even as the potential scan rate was up to 400 mV/s, strongly indicating that these CVs we observed were attributable to Fe‐SOD rather than the impurities in RTILs. Its catalysis for oxygen reduction reaction (ORR) was directly verified by the shifting of formal potential, E0′, of ORR, to the positive direction though the value of standard rate constant, κ0, corresponding to ORR, was not much enhanced. In PMIBF4, for the multi‐walled carbon nanotubes (MWCNTs)‐modified gold electrode, both the reduction peak current and oxidation peak current for oxygen redox reaction were all dramatically enhanced compared to the case of a bare gold electrode, and the value of κ0 was also increased from 3.1 × 10?3 cm s?1 for the bare gold electrode, to 17.5 × 10?3 cm s?1. Hence, in the presence of Fe‐SOD in RTILs, MWCNTs, showing catalysis for the electron transfer process of ORR, coupled with Fe‐SOD, leading to the shifting of formal potential corresponding to ORR to the positive direction, presented us a satisfactory catalysis for ORR in RTILs. Some reasons available for this catalysis behavior stemming from Fe‐SOD, and MWCNTs as well, for ORR are discussed based on the previously developed proposition.
Keywords:Iron containing superoxide dismutase (Fe‐SOD)  Room temperature ionic liquids (RTILs)  Oxygen reduction reaction (ORR)  Gold electrode  Multi‐walled carbon nanotubes (MWCNTs)
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号