首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Atomic and electronic structures of fluorinated BN nanotubes: computational study
Authors:Zhou Zhen  Zhao Jijun  Chen Zhongfang  von Ragué Schleyer Paul
Institution:Institute of New Energy Material Chemistry, Institute of Scientific Computing, Nankai University, Tianjin 300071, People's Republic of China. zhouzhen@nankai.edu.cn
Abstract:The atomic and electronic structures of fluorinated BN nanotubes (BNNTs) were investigated by generalized gradient approximation (GGA) density functional theory (DFT). The reaction energies of F2 with pristine single-walled BNNTs to form fluorinated BNNTs are exothermic up to 50% coverage. At lower F coverages (below 50%), fluorines prefer external attachments to boron atoms and stay as far away as possible. At 50% F coverage, fluorines favor attachment to all the boron atoms of the outer surface energetically. Such preferable fluorination patterns and highly exothermic reaction energies hold true for double-walled (and multiwalled) BNNTs when the outer tube surface is considered. Fluorination transforms BNNTs into p-type semiconductors at low F coverages, while high F coverages convert BNNTs into p-type conductors. Therefore, the electronic and transport properties of BNNTs can be engineered by fluorination, and this provides potential applications for fluorinated BNNTs in nanoelectronics.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号