首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Influence of heating rate on kinetic quantities of solid phase thermal decomposition
Authors:R Bigda  A Mianowski
Institution:(1) Institute for Chemical Processing of Coal, Zabrze, Poland, 41-803, Zamkowa 1;(2) Department of Inorganic Chemistry and Technology, Silesian University of Technology, Gliwice, Poland, 44-100, Krzywoustego 6
Abstract:Thermogravimetric analyses of thermal decomposition (pyrolysis, thermal dissociation and combustion) of 9 different samples were carried out in dynamic conditions at different heating rates. The kinetic parameters (E, A and km) of thermal decomposition were determined and interrelations between the parameters and heating rate q were analyzed. There were also relations between Arrhenius and Eyring equations analyzed for thermal decomposition of solid phase. It was concluded that Eyring theory is an element, which interconnects used thermokinetic equations containing Arrhenius law and suggests considering kinetic quantities in way relative to 3 kinetic constants (E, A and km). Analysis of quantities other than km (i.e. E, A, Δ+H, Δ+S) in relation to heating rate is an incomplete method and does not lead to unambiguous conclusions. It was ascertained that in ideal case, assuming constant values of kinetic parameters (E and A) towards heating rate and satisfying both Kissinger equations, reaction rate constant km should take on values intermediate between constants (km)1 and (km)2 determined from these equations. Whereas behavior of parameters E and A towards q were not subjected to any rule, then plotting relation km vs. q in the background of (km)1 and (km)2 made possible classification of differences between thermal decomposition processes taking place in oxidizing and oxygen-free atmosphere.
Keywords:Arrhenius law  Eyring theory  heating rate  isokinetic effect  thermogravimetry  thermokinetic analysis
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号