首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Tailorable integrated optofluidic filters for biomolecular detection
Authors:Measor Philip  Phillips Brian S  Chen Aiqing  Hawkins Aaron R  Schmidt Holger
Institution:School of Engineering, University of CA Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA.
Abstract:Spectral filtering is an essential component of biophotonic methods such as fluorescence and Raman spectroscopy. Predominantly utilized in bulk microscopy, filters require efficient and selective transmission or removal of signals at one or more wavelength bands. However, towards highly sensitive and fully self-contained lab-on-chip systems, the integration of spectral filters is an essential step. In this work, a novel optofluidic solution is presented in which a liquid-core optical waveguide both transports sample analytes and acts as an efficient filter for advanced spectroscopy. To this end, the wavelength dependent nature of interference-based antiresonant reflecting optical waveguide technology is exploited. An extinction of 37 dB, a narrow rejection band of only 2.5 nm and a free spectral range of 76 nm using three specifically designed dielectric layers are demonstrated. These parameters result in an 18.4-fold increase in the signal-to-noise ratio for on-chip fluorescence detection. In addition, liquid-core waveguide filters with three operating wavelengths were designed for F?rster resonance energy transfer detection and demonstrated using doubly labeled oligonucleotides. Incorporation of high-performance spectral processing illustrates the power of the optofluidic concept where fluidic channels also perform optical functions to create innovative and highly integrated lab-on-chip devices.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号