首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Single-molecule magnets: a large Mn30 molecular nanomagnet exhibiting quantum tunneling of magnetization
Authors:Soler Monica  Wernsdorfer Wolfgang  Folting Kirsten  Pink Maren  Christou George
Institution:Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, USA.
Abstract:The largest single-molecule magnet (SMM) to date has been prepared and studied. Recrystallization of known Mn(12)O(12)(O(2)CCH(2)Bu(t))(16)(H(2)O)(4)] (1; 8Mn(III), 4Mn(IV)) from CH(2)Cl(2)/MeNO(2) causes its conversion to Mn(30)O(24)(OH)(8)(O(2)CCH(2)Bu(t))(32)(H(2)O)(2)(MeNO(2))(4)] (2; 3Mn(II), 26Mn(III), Mn(IV)). The structure of 2 consists of a central, near-linear Mn(4)O(6)] backbone, to either side of which are attached two Mn(13)O(9)(OH)(4)] units. Peripheral ligation around the resulting Mn(30)O(24)(OH)(8)] core is by 32 Bu(t)CH(2)CO(2)(-), 2 H(2)O, and 4 MeNO(2) groups. The molecule has crystallographically imposed C(2) symmetry. Variable-temperature and -field magnetization (M) data were collected in the 1.8-4.0 K and 0.1-0.4 T ranges and fit by matrix diagonalization assuming only the ground state is occupied at these temperatures. The fit parameters were S = 5, D = -0.51 cm(-1) = -0.73 K, and g = 2.00, where D is the axial zero-field splitting parameter. AC susceptibility measurements in the 1.8-7.0 K range in a zero DC field and a 3.5 G AC field oscillating at frequencies in the 50-997 Hz range revealed a frequency-dependent out-of-phase (chi(M)') signal below 3 K, indicating 2 to be a single-molecule magnet (SMM), the largest yet obtained. Magnetization versus DC field sweeps show hysteresis loops but no clear steps characteristic of quantum tunneling of magnetization (QTM). However, magnetization decay data below 1 K were collected and used to construct an Arrhenius plot that revealed temperature-independent relaxation below 0.3 K. The fit of the thermally activated region above approximately 0.5 K gave U(eff)/k = 15 K, where U(eff) is the effective relaxation barrier. Resonant QTM was confirmed from the appearance of a "quantum hole" when the recent quantum hole digging method was employed. The combined results demonstrate that SMMs can be prepared that are significantly larger than any known to date and that this new, large Mn(30) complex still demonstrates quantum behavior.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号