首页 | 本学科首页   官方微博 | 高级检索  
     


Tuning the magnetic properties of Li(x)CrTi0.25Se2 (0.03 < or = x < or = 0.7) by directed deintercalation of lithium
Authors:Behrens Malte  Wontcheu Joseph  Kiebach Ragnar  Bensch Wolfgang
Affiliation:Institut für Anorganische Chemie, University of Kiel, Olshausenstrasse 40-60, 24098 Kiel, Germany.
Abstract:X-ray diffraction (XRD), in situ energy-dispersive X-ray diffraction (EDXRD), X-ray absorption near-edge structure (XANES), extended X-ray absorption fine structure (EXAFS), and magnetic measurements were applied to investigate the effects of lithium deintercalation on pseudolayered Li(0.70)CrTi(0.25)Se(2). A detailed picture of structural changes during the deintercalation process was obtained by combining the results of EDXRD and EXAFS. Removal of Li from the host-guest complex leads to anisotropic contraction of the unit cell with stronger impact on the c axis, which is the stacking axis of the layers. The EDXRD experiments evidence that the shrinkage of the lattice parameters with decreasing x(Li) in Li(x)CrTi(0.25)Se(2) is nonlinear in the beginning and then becomes linear. Analysis of the EXAFS spectra clearly shows that the Cr/Ti-Se distances are affected in a different manner by Li removal. The Cr-Se bond lengths decrease, whereas the Ti-Se bonds lengthen when the Li content is reduced, which is consistent with XRD data. Magnetic measurements reveal a change from predominantly antiferromagnetic exchange (theta(p) = -300 K) interactions for the pristine material to ferromagnetic exchange interactions (theta = 25 K) for the fully intercalated material. Thus, the magnetic properties can be altered under ambient conditions by directed adjustment of the dominant magnetic exchange. The unusual magnetic behavior can be explained on the basis of the variation of the metal-metal distances and the Cr-Se-Cr angles with x, which were determined by Rietveld refinements. Owing to competing ferromagnetic and antiferromagnetic exchange interactions and disorder, the magnetic ground state of the intercalated materials is characterized by spin-glass or spin-glass-like behavior.
Keywords:chalcogenides  chromium  EXAFS spectroscopy  intercalations  magnetic properties
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号