首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Development and Application of Instrumental Methods for Strain Analysisof Semiconductor Layers and Devices
Authors:Dimitra Papadimitriou  Efthymios Liarokapis  Wolfgang Richter
Institution:Department of Physics, National Technical University, GR-15780 Athens, Greece, GR
Institut für Festk?rperphysik, Sekr. PN 6-1, Technische Universit?t Berlin, Hardenbergstr. 36, D-10623 Berlin, Germany, DE
Abstract: Strain effects on semiconductor layers were studied by means of optical spectroscopic techniques with a device developed especially for the study of layered structures and microstructures. Raman, modulated photoreflectance and reflectance anisotropy spectroscopy (RAS) were applied. Measurements were performed on elemental semiconductors (Si), semiconductor alloys (Si–Ge) and III–V semiconductor compounds (GaAs). By application of RAS, strains lower than 10−4 could be resolved, which is at least one order of magnitude lower than those observable with Raman and modulated reflectance techniques. The RAS spectra of layers strained along either the 010] or 011] direction showed a derivative-like structure at E1-gap energies, which increased linearly and very quickly with increasing strain. The dependence of this spectral feature on applied strain was used to evaluate strain-dependent effects. This behaviour strongly suggests that RAS can be applied for the optical characterisation of strain in semiconductor microstructures and devices, with a higher efficiency and accuracy than that achieved by previously established optical methods such as Raman and modulation spectroscopy. In addition, the compactness and ease of operation of the instrumentation of RAS provides considerable potential for in situ monitoring/control of semiconductor fabrication conditions.
Keywords::   Strain analysis  semiconductor layers  semiconductor devices  
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号