首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Quantum Inequalities in Quantum Mechanics
Authors:Simon P Eveson  Christopher J Fewster  Rainer Verch
Institution:(1) Department of Mathematics, University of York, Heslington, York, YO10 5DD, United Kingdom;(2) Max-Planck-Institut for Mathematics in the Sciences, Inselstr. 22, D-04103 Leipzig, Germany
Abstract:We study a phenomenon occurring in various areas of quantum physics, in which an observable density (such as an energy density) which is classically pointwise non-negative may assume arbitrarily negative expectation values after quantization, even though the spatially integrated density remains non-negative. Two prominent examples which have previously been studied are the energy density (in quantum field theory) and the probability flux of rightwards-moving particles (in quantum mechanics). However, in the quantum field context, it has been shown that the magnitude and space-time extension of negative energy densities are not arbitrary, but restricted by relations which have come to be known as lsquoquantum inequalitiesrsquo. In the present work, we explore the extent to which such quantum inequalities hold for typical quantum mechanical systems. We derive quantum inequalities of two types. The first are lsquokinematicalrsquo quantum inequalities where spatially averaged densities are shown to be bounded below. Specifically, we obtain such kinematical quantum inequalities for the current density in one spatial dimension (imposing constraints on the backflow phenomenon) and for the densities arising in Weyl–Wigner quantization. The latter quantum inequalities are direct consequences of sharp Gårding inequalities. The second type are lsquodynamicalrsquo quantum inequalities where one obtains bounds from below on temporally averaged densities. We derive such quantum inequalities in the case of the energy density in general quantum mechanical systems having suitable decay properties on the negative spectral axis of the total energy.Furthermore, we obtain explicit numerical values for the quantum inequalities on the one-dimensional current density, using various spatial averaging weight functions. We also improve the numerical value of the related lsquobackflow constantrsquo previously investigated by Bracken and Melloy. In many cases our numerical results are controlled by rigorous error estimates.submitted 27/01/04, accepted 05/05/04
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号