首页 | 本学科首页   官方微博 | 高级检索  
     


High physisorption affinity of water molecules to the hydroxylated aluminum oxide (001) surface
Authors:Kittaka Shigeharu  Yamaguchi Keisuke  Takahara Shuichi
Affiliation:Department of Chemistry, Faculty of Science, Okayama University of Science, 1-1 Ridaicho, Okayama 700-0005, Japan. kittaka@chem.ous.ac.jp
Abstract:The adsorption mechanism of water on the hydroxylated (001) plane of α-Al(2)O(3) was studied by measuring adsorption isotherms and GCMC simulations. The experimental adsorption isotherms for three α-Al(2)O(3) samples from different sources are typical type II, in which adsorption starts sharply at low pressures, suggesting a high affinity of water to the Al(2)O(3) surface. Water molecules are adsorbed in two registered forms (bilayer structure). In the first form, water is registered at the center of three surface hydroxyl groups by directing a proton of the water. In the second form, a water molecule is adsorbed by bridging two of the first-layer water molecules through hydrogen bonding, by which a hexagonal ring network is constructed over the hydroxylated surface. The network domains are spread over the surface, and their size decreases as the temperature increases. The simulated adsorption isotherms present a characteristic two-dimensional (2D) phase diagram including a 2D critical point at 365K, which is higher than that on the hydroxylated Cr(2)O(3) surface (319 K). This fact substantiates the high affinity of water molecules to the α-Al(2)O(3) surfaces, which enhances the adsorbability originating from higher heat of adsorption. The higher affinity of water molecules to the α-Al(2)O(3) (001) plane is ascribed to the high compatibility of the crystal plane to form a hexagonal ring network of (001) plane of ice Ih.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号