首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Aqueous uranium(VI) hydrolysis species characterized by attenuated total reflection Fourier-transform infrared spectroscopy
Authors:Müller Katharina  Brendler Vinzenz  Foerstendorf Harald
Institution:Institut für Radiochemie, Forschungszentrum Dresden-Rossendorf (FZD), P.O. Box 510119, D-01314 Dresden, Germany.
Abstract:The speciation of uranium(VI) in micromolar aqueous solutions at ambient atmosphere was studied by attenuated total reflection Fourier-transform infrared (ATR FT-IR) spectroscopy and by speciation modeling applying the updated NEA thermodynamic database. It can be shown that reliable infrared spectra of micromolar U(VI) solutions are obtained abolishing the restrictions of previous spectroscopic investigations to millimolar concentrations and, consequently, to the acidic pH range. A significant change of the U(VI) speciation can be derived from the spectral alterations of the absorption band representing the antisymmetric stretching mode (nu3) of the UO2(2+) ion observed upon lowering the U(VI) concentration from the milli- to the micromolar range at a constant pH 4 value. The acquisition of spectra of diluted U(VI) solutions allows the increase of the pH up to 8.5 without the risk of formation of colloidal or solid phases. The infrared spectra are compared to the results of the computed speciation patterns. Although a complete interpretation of the spectra can not be given at this state of knowledge, the spectral data strongly suggest the presence of monomeric U(VI) hydroxo species already showing up at a pH value > or = 2.5 and dominating the speciation at pH 3. This is in contradiction to the predicted speciation where the fully hydrated UO2(2+) is expected to represent the main species at pH values below 4. At ambient pH, a more complex speciation is suggested compared to the results of the computational modeling technique. The predicted dominance of the UO2(CO3)3(4-) complex at pH > or = 8 was not confirmed by the infrared data. However, the infrared spectra indicate the formation of hydroxo complexes obviously containing carbonate ligands.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号