首页 | 本学科首页   官方微博 | 高级检索  
     


Spline-based sieve maximum likelihood estimation in the partly linear model under monotonicity constraints
Authors:Minggen Lu
Affiliation:aSchool of Community Health Sciences, University of Nevada, Reno, NV 89557, USA
Abstract:We study a spline-based likelihood method for the partly linear model with monotonicity constraints. We use monotone B-splines to approximate the monotone nonparametric function and apply the generalized Rosen algorithm to compute the estimators jointly. We show that the spline estimator of the nonparametric component achieves the possible optimal rate of convergence under the smooth assumption and that the estimator of the regression parameter is asymptotically normal and efficient. Moreover, a spline-based semiparametric likelihood ratio test is established to make inference of the regression parameter. Also an observed profile information method to consistently estimate the standard error of the spline estimator of the regression parameter is proposed. A simulation study is conducted to evaluate the finite sample performance of the proposed method. The method is illustrated by an air pollution study.
Keywords:AMS subject classifications: 62G08
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号