首页 | 本学科首页   官方微博 | 高级检索  
     


Adsorption and dissociation of O2 on Pt-Co and Pt-Fe alloys
Authors:Xu Ye  Ruban Andrei V  Mavrikakis Manos
Affiliation:Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
Abstract:Self-consistent periodic density functional theory calculations (GGA-PW91) have been performed to study the adsorption of O and O(2) and the dissociation of O(2) on the (111) facets of ordered Pt(3)Co and Pt(3)Fe alloys and on monolayer Pt skins covering these two alloys. Results are compared with those obtained on two Pt(111) surfaces, one at the equilibrium lattice constant and the other laterally compressed by 2% to match the strain in the Pt alloys. The absolute magnitudes of the binding energies of O and O(2) follow the same order in the two alloy systems: Pt skin < compressed Pt(111) < Pt(111) < Pt(3)Co(111) or Pt(3)Fe(111). The reduced activity of the compressed Pt(111) and Pt skins for oxygen can be rationalized as being due to the shifting of the d-band center increasingly away from the Fermi level. We propose that an alleviation of poisoning by O and enhanced rates for reactions involving O may be some of the reasons why Pt skins are more active for the oxygen reduction reaction in low-temperature fuel cells. Finally, a linear correlation between the transition-state and final-state energies of O(2) dissociation on monometallic and bimetallic surfaces is revealed, pointing to a simple way to screen for improved cathode catalysts.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号