首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Comparison of high-order many-body perturbation theory and configuration interaction for H2O
Authors:Rodney J Bartlett  Isaiah Shavitt
Institution:Battelle Columbus Laboratories, Columbus, Ohio 43201, USA;Battelle Columbus Laboratories, Columbus, Ohio 43201, USA;Department of Chemistry, The Ohio State University, Columbus, Ohio 43201, USA
Abstract:Diagrammatic many-body perturbation theory, coupled with a recursive computational procedure, is employed to obtain the correlation energy of H2O within a 39-STO basis set by evaluating all double-excitation diagrams through twelfth order without any approximations. This provides, for the first time, the complete double-excitation diagrams contributions to the correlation energy, which is ?0.28826 hartree, compared with a correlation energy of ?0.27402 hartree obtained from a configuration interaction calculation which includes all double excitations. The difference of 0.0142 hartree includes the “size consistency” correction to the all-double-excitations CI energy, due to the “pathological” unliked-diagram terms remaining in that result, but also involves certain fourth- and higher-order rearrangement diagrams. Contrary to conventional belief, the unshifted, or Møller-Plesset partitioning of the hamiltonian provides a much more rapid convergence of the perturbation series that does the shifted, or Epstein-Nesbet partitioning. In both cases. Padé approximants enhance the convergence of the series considerably. A simple variation-perturbation scheme based on the first-order MBPT wavefunction is sufficient to provide 97.5% of the all-doubles CI correlation energy.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号