首页 | 本学科首页   官方微博 | 高级检索  
     


Synthesis,characterization, and biological activity of some transition metal complexes with Schiff base ligands derived from 4-amino-5-phenyl-4H-1,2,4-triazole-3-thiol and salicaldehyde
Authors:Farag M. A. Altalbawy  Gehad G. Mohamed  Mohsen Abou El-Ela Sayed  Mohamed I. A. Mohamed
Affiliation:(1) National Institute of Laser Enhanced Sciences, Cairo University, Giza, 12613, Egypt;(2) Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt;(3) Botany Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
Abstract:

Abstract  

The coordination behaviour of a Schiff base with SNO donation sites, derived from condensation of 4-amino-5-phenyl-4H-1,2,4-triazole-3-thiol and salicaldehyde, towards some bi- and trivalent metal ions, namely Cr(III), Mn(II), Fe(III), Co(II) (Cl, ClO4), Ni(II) (Cl, ClO4), Cu(II), and Zn(II), is reported. The metal complexes were characterized on the basis of elemental analysis, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance, and thermal analyses (TG, DTG, and DTA). The ionization constant of the Schiff base under investigation and the stability constants of its metal chelates were calculated pH-metrically at 25 °C and ionic strength μ = 0.1 M in 50% (v/v) ethanol–water mixture. The chelates were found to have octahedral (Mn(II)), trigonal bipyramidal (Co(II), Ni(II), Zn(II)), and tetrahedral (Cr(III), Fe(III), and Cu(II)) structures. The ligand and its binary chelates were subjected to thermal analyses and the different thermodynamic activation parameters were calculated from their corresponding DTG curves to throw more light on the nature of changes accompanying the thermal decomposition process of these compounds. The free Schiff base ligand and its metal complexes were tested in vitro against Aspergillus flavus, Candida albicans, C. tropicalis, and A. niger fungi and Bacillus subtilis and Escherichia coli bacteria in order to assess their antimicrobial potential. The results indicate that the ligand and its metal complexes possess antimicrobial properties.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号