首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Electronic and geometric structure of the 3d-transition metal monocarbonyls MCO, M=Sc, Ti, V, and Cr
Authors:Koukounas Constantine  Kardahakis Stavros  Mavridis Aristides
Institution:Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, P.O. Box 64 004, 15710 Zografou, Athens, Greece.
Abstract:The electronic and geometric structure of the 3d-transition metal monocarbonyls MCO, M=Sc, Ti, V, and Cr was investigated through coupled cluster (CC) and multireference variational methods (MRCI) combined with large basis sets. For the ground and a few low-lying excited states complete potential energy profiles were constructed at the CC-level of theory. The M-CO dissociation energies of the ground states X 4Sigma-,X 5Delta,X 6Sigma+, and X 7A' are calculated to be 36, 27, 18, and 2 kcal/mol for ScCO, TiCO, VCO, and CrCO, with respect to Sc(4F),Ti(5F),V(6D),Cr(7S)+CO(X 1Sigma+). The bonding is rather complicated and could be attributed mainly to pi-conjugation effects between the M and CO pi-electrons, along with weak sigma-charge transfer from CO to M atoms. Almost in all cases the metal atoms appear to be slightly positively charged, at least according to the direction of the dipole moment vectors and the MRCI population densities.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号