首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The Hanging Rope of Minimum Elongation for a Nonlinear Stress-Strain Relation
Authors:Pablo V Negrón-Marrero
Institution:1. Department of Mathematics, University of Puerto Rico, Humacao, PR, 00791-4300, U.S.A.
Abstract:We consider the problem of determining the shape that minimizes the elongation of a rope that hangs vertically under its own weight and an applied force, subject to either a constraint of fixed total mass or fixed total volume. The constitutive function for the rope is given by a nonlinear stress-strain relation and the mass-density function of the rope can be variable. For the case of fixed total mass we show that the problem can be explicitly solved in terms of the mass density function, applied force, and constitutive function. In the special case where the mass-density function is constant, we show that the optimal cross-sectional area of the rope is as that for a linear stress-strain relation (Hooke's Law). For the total fixed volume problem, we use the implicit function theorem to show the existence of a branch of solutions depending on the parameter representing the acceleration of gravity. This local branch of solutions is extended globally using degree theoretic techniques.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号