首页 | 本学科首页   官方微博 | 高级检索  
     


Time-like geodesic structure of a spherically symmetric black hole in the brane-world
Authors:Zhou Sheng  Chen Ju-Hua  Wang Yong-Jiu
Affiliation:College of Physics and Information Science, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of the Ministry of Education, Hunan Normal University, Changsha 410081, China
Abstract:Recently Malihe Heydari-Fard obtained a spherically symmetric exterior black hole solution in the brane-world scenario, which can be used to explain the galaxy rotation curves without postulating dark matter. By analysing the particle effective potential, we have investigated the time-like geodesic structure of the spherically symmetric black hole in the brane-world. We mainly take account of how the cosmological constant α and the stellar pressure β affect the time-like geodesic structure of the black hole. We find that the radial particle falls to the singularity from a finite distance or plunges into the singularity, depending on its initial conditions. But the non-radial time-like geodesic structure is more complex than the radial case. We find that the particle moves on the bound orbit or stable (unstable) circle orbit or plunges into the singularity, or reflects to infinity, depending on its energy and initial conditions. By comparing the particle effective potential curves for different values of the stellar pressure β and the cosmological constant α, we find that the stellar pressure parameter β does not affect the time-like geodesic structure of the black hole, but the cosmological constant α has an impact on its time-like geodesic structure.
Keywords:time-like geodesics  effective potential  spherically symmetric black hole
本文献已被 维普 等数据库收录!
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号