首页 | 本学科首页   官方微博 | 高级检索  
     


Scaling study of the combustion performance of gasben gas rocket injectors
Authors:Wang Xiao-Wei  Cai Guo-Biao  Jin Ping
Affiliation:School of Astronautics, Beijing University of Aeronautics and Astronautics, Beijing 100191, China;School of Astronautics, Beijing University of Aeronautics and Astronautics, Beijing 100191, China;School of Astronautics, Beijing University of Aeronautics and Astronautics, Beijing 100191, China
Abstract:To obtain the key subelements that may influence the scaling of gas-gas injector combustor performance, the combustion performance subelements in a liquid propellant rocket engine combustor are initially analysed based on the results of a previous study on the scaling of a gas-gas combustion flowfield. Analysis indicates that inner wall friction loss and heat-flux loss are two key issues in gaining the scaling criterion of the combustion performance. The similarity conditions of the inner wall friction loss and heat-flux loss in a gas-gas combustion chamber are obtained by theoretical analyses. Then the theoretical scaling criterion was obtained for the combustion performance, but it proved to be impractical. The criterion conditions, the wall friction and the heat flux are further analysed in detail to obtain the specific engineering scaling criterion of the combustion performance. The results indicate that when the inner flowfields in the combustors are similar, the combustor wall shear stress will have similar distributions qualitatively and will be directly proportional to pc0.8 dt-0.2 quantitatively. In addition, the combustion peformance will remain unchanged. Furthermore, multi-element injector chambers with different geometric sizes and at different pressures are numerically simulated and the wall shear stress and combustion efficiencies are solved and compared with each other. A multi-element injector chamber is designed and hot-fire tested at several chamber pressures and the combustion performances are measured in a total of nine hot-fire tests. The numerical and experimental results verified the similarities among combustor wall shear stress and combustion performances at different chamber pressures and geometries, with the criterion applied.
Keywords:scaling  combustion performance  subscale combustor wall friction  gas-gas combustion
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号