Programmable agile beam steering based on a liquid crystal prism |
| |
Authors: | Xu Lin Huang Zi-Qiang Yang Ruo-Fu |
| |
Affiliation: | School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054, China |
| |
Abstract: | To meet the application need for agile precision beam steering, a novel liquid crystal prism device with a simple structure, convenient control, low cost and applicable performance is presented, and analysed theoretically and experimentally. The relationships between the optical path and the thickness of the liquid crystal cell under different voltages are investigated quantitatively by using a theoretical model. Analysis results show that the optical path profile of the liquid crystal prism has a quasi-linear slope and the standard deviation of the linear slope is less than 16 nm. The slope ratio can be changed by a voltage, which achieves the programmable beam steering and control. Practical liquid crystal prism devices are fabricated. Their deflection angles and wavefront profiles with different voltages are experimentally tested. The results are in good agreement with the simulated results. The results imply that the agile beam steering in a scope of 100 μrad with a micro-rad resolution is substantiated in the device. The two-dimensional beam steering is also achieved by cascading two liquid crystal prism devices. |
| |
Keywords: | liquid crystal polarization devices beam steering optical scanner |
本文献已被 维普 等数据库收录! |
| 点击此处可从《中国物理 B》浏览原始摘要信息 |
|
点击此处可从《中国物理 B》下载免费的PDF全文 |
|