首页 | 本学科首页   官方微博 | 高级检索  
     


Deformation and reverse snapping of a circular shallow shell under uniform edge tension
Authors:Jen-San Chen  Tzu-Min Huang
Affiliation:aDepartment of Mechanical Engineering, National Taiwan University, Taipei, Taiwan 10617, Taiwan
Abstract:In this paper we study the deformation and stability of a shallow shell under uniform edge tension, both theoretically and experimentally. Von Karman’s plate model is adopted to formulate the equations of motion. For a shell with axisymmetrical initial shape, the equilibrium positions can be classified into axisymmetrical and unsymmetrical solutions. While there may exist both stable and unstable axisymmetrical solutions, all the unsymmetrical solutions are unstable. Since the unsymmetrical solutions will not affect the stability of the axisymmetrical solutions, it is concluded that for quasi-static analysis, there is no need to include unsymmetrical assumed modes in the calculation. If the shell is initially in the unstrained configuration, it will only be flattened smoothly when the edge tension is applied. No snap-through buckling is possible in this case. On the other hand, if the shell is initially in the strained position, it will be snapped back to the stable position on the other side of the base plane when the edge tension reaches a critical value. Experiment is conducted on several free brass shells of different initial heights to verify the theoretical predictions. Generally speaking, for the range of initial height H < 10 the experimental measurements of the deformation and the reverse snapping load agree well with theoretical predictions.
Keywords:Reverse snapping   Shallow shell   Edge tension
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号