首页 | 本学科首页   官方微博 | 高级检索  
     


Ab initio and quantum-defect calculations for the Rydberg states of ArH
Authors:Kirrander Adam  Child Mark S  Stolyarov Andrey V
Affiliation:Physical and Theoretical Chemistry Laboratory, Oxford University, Oxford OX1 3QZ, UK. adamk@physchem.ox.ac.uk
Abstract:Potential energy curves were evaluated for the ground and thirteen low-lying excited electronic states of the ArH molecule over a wide range of internuclear distances by the multi-reference averaged quadratic coupled cluster method. The ab initio energy differences and transition dipole moments were used to estimate Einstein emission coefficients, absorption oscillator strengths and radiative lifetimes. Diagonal and off-diagonal quantum defects, as functions of internuclear distance, were extracted from ab initio potentials of the lowest Rydberg states of the neutral ArH molecule by taking account of configuration interaction between Rydberg series converging to the ground and two electronic excited states of the ArH(+) cation. The derived quantum-defect functions were used to generate manifolds of higher excited Rydberg states. The agreement between experimental and calculated energies and radiative transition probabilities was found to be as good as or better than that obtained by earlier calculations.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号