首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Assembly of three-dimensional polymeric constructs containing cells/biomolecules using carbon dioxide
Authors:Yang Yong  Xie Yubing  Kang Xihai  Lee L James  Kniss Douglas A
Institution:Nanoscale Science and Engineering Center for Affordable Nanoengineering of Polymeric Biomedical Devices, Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
Abstract:Using low-pressure carbon dioxide (CO2), we demonstrated a novel and versatile approach to assembling polymeric constructs in the presence of cells and/or biomolecules in an aqueous environment. By regulating the CO2 pressure, the assembly was completed at biologically permissive temperatures with excellent preservation of the original structures. We further demonstrated that mammalian cells can survive the CO2-assisted bioassembly process (37 degrees C, 1.38 MPa, approximately 1 h). Human mesenchymal stem cells from bone marrow (hMSCs) exhibited the same cell morphology and proliferation potential as the untreated control. Mouse embryonic stem cells (mESCs) maintained ES-specific Oct-4 gene expression and differentiation potential after CO2 treatment as well. This method highlights the ability to construct multiple biodegradable polymeric scaffolds with well-defined architecture, on which various types of cells were grown, into a predesigned three-dimensional complex. In addition, protein and DNA bioactivity can be preserved in the context of a CO2-assisted assembly. This CO2-assisted bioassembly method provides for a manufacturing platform that, thus far, has been lacking in the fields of tissue engineering, cell-based biochips, cell therapy, and drug delivery.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号