首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effects of acid etching on the structure of PtNi catalyst and total exposed active sites
Authors:Bin Yang  Yanting Zhao  Liudang Fang
Institution:School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, China
Abstract:The integration technology of hydrogen preparation–hydrogen storage not only can utilize hydrogen energy efficiently but also can improve the selectivity of the electrode maximally. In the present work, the structure and composition of the PtNi catalyst was characterized by X-ray diffraction (XRD); and its electrochemical properties, morphology, and surface binding energy were analyzed by cyclic voltammetry (CV) and linear scanning voltammetry (LSV), scanning electron microscopy equipped with energy-dispersive spectrometry (SEM-EDS), and X-ray photoelectron spectroscopy (XPS), respectively. The effects of different acid etching treatments (e.g., etching time, etchant concentration, and etching temperature) on the structure and surface active sites were investigated by the orthogonal experiment. The experimental results reveal that after etching with 0.5 mol/L of perchloric acid for 0.5 h at 60°C, the electrode weight loss of the PtNi catalyst is mainly attributed to the large loss of Ni atoms in film layer. This results in the reduced alloy phase in film layer and the appearance of Pt characteristic diffraction peak. The relative content of Pt on the surface of the film electrode increases significantly, and the total number of active sites also increases correspondingly. The binding energy of Pt4f7/2 decreases by 0.19 eV, and the number of active sites involved in hydrogen release decreases, indicative of the reduced promotion effect of the PtNi catalyst on hydrogen release.
Keywords:acid etching  active sites  ion beam sputtering  PtNi  the weight loss of the electrode
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号