首页 | 本学科首页   官方微博 | 高级检索  
     


Atop-the-barrier localization in periodically driven double wells: A minimization of information entropic sums in conjugate spaces
Authors:Naveen Kumar  Prashant Raj  Pananghat Balanarayan
Affiliation:Department of Chemistry, Indian Institute of Science Education Research, Manauli PO, India
Abstract:The spatio-temporal localization of a system in the presence of an oscillating electric field for a symmetric double-well potential is examined via numerical simulations of the time-dependent Schrödinger equation. For an initial state with equal probability densities in both the wells, stabilized localization atop the barrier can be achieved on a periodic high-frequency driving. The barrier localization is characterized using Shannon information entropies in position and momentum spaces, defined as Sρ = − ∫ |ψ|2 ln |ψ|2 dx and Sγ = − ∫ |ϕ|2 ln |ϕ|2 dp , where ψ and ϕ refer to position and momentum space wave functions, respectively. The information entropy sum, Sρ + Sγ, goes through a minimum indicating the formation of the barrier-localized state, when the peak intensity of the oscillating field is reached. The generalized uncertainty via the Białynicki-Birula-Mycielski inequality ( Sρ + Sγ ≥ 1 + lnπ ) is saturated upon this minimization. This serves as a signature of the formation of the barrier-atop localized state, in terms of Shannon entropies of measurable densities.
Keywords:driven double-well systems  information entropies in conjugate spaces  minimum uncertainty states
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号