首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Electron trajectories in molecular orbitals
Authors:Isaiah Sumner  Hannah Anthony
Institution:Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, USA
Abstract:The time-dependent Schrödinger equation can be rewritten so that its interpretation is no longer probabilistic. Two well-known and related reformulations are Bohmian mechanics and quantum hydrodynamics. In these formulations, quantum particles follow real, deterministic trajectories influenced by a quantum force. Generally, trajectory methods are not applied to electronic structure calculations as they predict that the electrons in a ground-state, real, molecular wavefunction are motionless. However, a spin-dependent momentum can be recovered from the nonrelativistic limit of the Dirac equation. Therefore, we developed new, spin-dependent equations of motion for the quantum hydrodynamics of electrons in molecular orbitals. The equations are based on a Lagrange multiplier, which constrains each electron to an isosurface of its molecular orbital, as required by the spin-dependent momentum. Both the momentum and the Lagrange multiplier provide a unique perspective on the properties of electrons in molecules.
Keywords:Bohmian mechanics  Dirac equation  electronic structure  molecular orbitals  quantum hydrodynamics
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号