首页 | 本学科首页   官方微博 | 高级检索  
     检索      


FOURIER TRANSFORM INFRARED SPECTRAL STUDIES ON THE SCHIFF BASE MODE OF ALL-trans BACTERIORHODOPSIN and ITS PHOTOINTERMEDIATES,K and L*
Authors:Akio Maeda  Jun Sasaki  Jean-Marc Pfefferl  Yoshinori Shichida  Tru Yoshizawa
Institution:Akio Maeda,Jun Sasaki,Jean-Marc Pfefferlé,Yoshinori Shichida,Tôru Yoshizawa
Abstract:Abstract– Difference Fourier transform infrared spectra were recorded for bacteriorhodopsin upon irradiation at 230, 170 or 77 K, which gave, respectively, the spectrum of the M, L or K intermediate minus unphotolyzed all-trans bacteriorhodopsin (denoted as BR). By replacement of the Schiff base nitrogen with 15N, or of either its hydrogen at N or C15 with deuterium, the vibrational bands related to the Schiff base were identified and the isotope-shifts evaluated for BR, K and L. The 1348 cm?l band of BR and K and the 1400 cm?1 band of L were sensitive to each of these isotope substitutions. The 1254 cm?1 band of BR, the 1245 cm?1 band of K and the 1301 cm?1 band of L were sensitive to either N- or C15-deuteration but not to 15N-substitution. The N—D in-plane bending vibration of K and L appeared at 969 and 997 cm?1, respectively, upon substitution with D2O. All the results show that L is larger in frequencies related to the N—H in-plane bending vibration than K or BR and suggest that L has the strongest interaction with the protein. Among the bands containing an N—H bending vibration, the 1348 cm?1 band of K was more intense than the corresponding band of L at 1400 cm?1. The C15-deuteration-induced upshift of the 1245 cm?1 band of K was unobservable for the 1301 cm?1 band of L. Such differences between L and K might be brought about by a distortion in the retinal moiety close to the protonated Schiff base of the 13-cis chromophore.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号