首页 | 本学科首页   官方微博 | 高级检索  
     


Dissymmetrization of crystal structures of grossular-andradite garnets Ca3(Al,Fe)2(SiO4)3
Authors:O. V. Frank-Kamenetskaya  I. V. Rozhdestvenskaya  A. G. Shtukenberg  I. I. Bannova  Yu. A. Skalkina
Affiliation:(1) Department of Crystallography, St. Petersburg State University, Universitetskaya nab.7/9, 199034 Saint Petersburg, Russia
Abstract:The crystal structures of three birefringent grossular-andradite natural garnets Ca3(Al,Fe)2(SiO4)3 were investigated using single-crystal X-ray diffraction data (MoKα, number of reflections measured 8065, 10619, 9213; R = 2.81, 2.74, 3.26%). According to the values of unit cell constants, inconsistent intensities of reflections and appearance of additional (forbidden) reflections explored garnets have different symmetry: cubic, sp. gr. 
$$Iaoverline 3 d$$ (Fe/(Fe + Al) = 0.078, Δn = 0.0002); orthorhombic, sp. gr. Fddd (Fe/(Fe + Al) = 0.58, Δn = 0.0089); triclinic, sp. gr. 
$$Ioverline 1 $$ or I1 and pseudo-orthorhombic (Fe/(Fe + Al) = 0.23, Δn = 0.0066). Careful refinement of all crystal structures in space groups 
$$Iaoverline 3 d$$, Fddd and 
$$Ioverline 1 $$ has confirmed the symmetry reduction detected on the diffraction patterns and shown that dissymmetrization of cubic garnets connects with partial ordering of trivalent cations over Y-sites. Direct linear relationship between Fe-occupancy, an average Y–O bond lengths and octahedral O–O edges has been revealed. Cluster models of dissymmetrization have been regarded. Evidence for the “growth dissymmetrization” phenomena (kinetic phase transformations) as the reasons of the symmetry reduction of cubic garnets has been discussed. The reasonable assumption that the garnets crystal structures described as orthorhombic are triclinic, but the deviations from the orthorhombic symmetry so small, that cannot be manifested by of X-ray diffraction study has been taken.
Keywords:Grossular-andradite garnets  Dissymmetrization  Crystal chemistry    anomalous”   birefringence
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号