首页 | 本学科首页   官方微博 | 高级检索  
     

基于字典学习的地震数据随机噪声压制算法
引用本文:聂永丹,张岩,唐国维. 基于字典学习的地震数据随机噪声压制算法[J]. 数学的实践与认识, 2017, 0(9): 123-128
作者姓名:聂永丹  张岩  唐国维
作者单位:东北石油大学计算机与信息技术学院,黑龙江大庆,163318
基金项目:东北石油大学青年基金(NEPUQN2014-20),黑龙江省研究生教育创新工程资助项目(JGXM-HLJ-2015111),黑龙江省教育科学规划重点课题(GJB1215019),东北石油大学科研培育基金项目(NEPUPY-1-22),大庆市指导性科技计划项目(201-2016-09)
摘    要:针对传统变换基函数难以获得地震数据最优的稀疏表示,提出基于字典学习的随机噪声压制算法,将地震数据分块,每一块包含多个地震记录道在一定采样时间段内波形的信息,利用自适应字典学习技术,以地震数据块为训练样本,根据地震数据邻近块中记录道相似的特点,构造超完备字典,稀疏编码地震数据,从而恢复数据的主要特征,压制随机噪声.实验表明算法具有较高的PSNR值,并且能较好的保持地震数据纹理复杂区域的局部特征.

关 键 词:自适应学习  地震数据去噪  稀疏表示  超完备字典

Random Noise Suppression Algorithm for Seismic Data Based on Dictionary Learning
NIE Yong-dan,ZHANG Yan,TANG Guo-wei. Random Noise Suppression Algorithm for Seismic Data Based on Dictionary Learning[J]. Mathematics in Practice and Theory, 2017, 0(9): 123-128
Authors:NIE Yong-dan  ZHANG Yan  TANG Guo-wei
Abstract:Aiming at the problems that the traditional sparse transform functions are difficult to obtain the optimal representation of seismic data,thus the random noise suppression algorithm based on dictionary learning is proposed.The seismic data are divided into several blocks,and each block contains multiple seismic records in a certain period time of sampling waveform information,the over-complete dictionary learning technique is used with the seis mic data blocks as the training samples.According to the characteristics of the seismic data,over-complete dictionary is adaptively constructed,and the seismic data are sparsely coded,so as to restore the main features of the data,and then to suppress random noise.The ;experimental results show that the algorithm yields higher PSNR,and preserves the local characteristics of the complex region of seismic data better.
Keywords:adaptive learning  seismic data denoising  sparse representation  over-complete dictionary
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号