首页 | 本学科首页   官方微博 | 高级检索  
     


Surface chemistry to minimize fouling from blood-based fluids
Authors:Christophe Blaszykowski  Sonia Sheikh  Michael Thompson
Affiliation:Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, CanadaM5S 3H6. mikethom@chem.utoronto.ca.
Abstract:Upon contact with bodily fluids/tissues, exogenous materials spontaneously develop a layer of proteins on their surface. In the case of biomedical implants and equipment, biological processes with deleterious effects may ensue. For biosensing platforms, it is synonymous with an overwhelming background signal that prevents the detection/quantification of target analytes present in considerably lower concentrations. To address this ubiquitous problem, tremendous efforts have been dedicated over the years to engineer protein-resistant coatings. There is now extensive literature available on stealth organic adlayers able to minimize fouling down to a few ng cm(-2), however from technologically irrelevant single-protein buffered solutions. Unfortunately, few coatings have been reported to present such level of performance when exposed to highly complex proteinaceous, real-world media such as blood serum and plasma, even diluted. Herein, we concisely review the surface chemistry developed to date to minimize fouling from these considerably more challenging blood-based fluids. Adsorption dynamics is also discussed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号