首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Artificial graphenes: Dirac matter beyond condensed matter
Institution:Laboratoire de physique des solides, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
Abstract:After the discovery of graphene and of its many fascinating properties, there has been a growing interest for the study of “artificial graphenes”. These are totally different and novel systems that bear exciting similarities with graphene. Among them are lattices of ultracold atoms, microwave or photonic lattices, “molecular graphene” or new compounds like phosphorene. The advantage of these structures is that they serve as new playgrounds for measuring and testing physical phenomena that may not be reachable in graphene, in particular the possibility of controlling the existence of Dirac points (or Dirac cones) existing in the electronic spectrum of graphene, of performing interference experiments in reciprocal space, of probing geometrical properties of the wave functions, of manipulating edge states, etc. These cones, which describe the band structure in the vicinity of the two connected energy bands, are characterized by a topological “charge”. They can be moved in the reciprocal space by appropriate modification of external parameters (pressure, twist, sliding, stress, etc.). They can be manipulated, created or suppressed under the condition that the total topological charge be conserved. In this short review, I discuss several aspects of the scenarios of merging or emergence of Dirac points as well as the experimental investigations of these scenarios in condensed matter and beyond.
Keywords:Graphene  Ultracold atoms  Microwaves  Polaritons  Phosphorene  Bloch oscillations  Graphène  Atomes ultra-froids  Micro-ondes  Polaritons  Phosphorène  Oscillations de Bloch
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号