首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Detection of sibutramine administration: a gas chromatography/mass spectrometry study of the main urinary metabolites
Authors:Strano-Rossi Sabina  Colamonici Cristiana  Botrè Francesco
Institution:Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Largo Giulio Onesti 1, 00197 Rome RM, Italy.
Abstract:A gas chromatographic/mass spectrometric (GC/MS) study aimed at identifying the metabolites of sibutramine (1-(4-chlorophenyl)-N,N-dimethyl-alpha-(2-methylpropyl)cyclobutanemethanamine) in urine is described. Urinary excretion of sibutramine metabolites following the oral administration of a single dose of sibutramine was followed by GC/MS analysis. After identification of the chromatographic signals corresponding to the six main urinary metabolites, the fragmentation pattern was studied in electron ionization (EI) mode after derivatization to the corresponding methyl and trimethylsilyl derivatives. Urine samples were pretreated according to a reference procedure (liquid/liquid separation, enzymatic hydrolysis, pre-concentration under a stream of nitrogen and derivatization, either under thermal incubation and by microwave irradiation). All sibutramine metabolites were excreted as glucuroconjugates, and retain the chiral carbon present in the sibutramine skeleton. The metabolites identified included mono-desmethylsibutramine (nor-sibutramine), bi-desmethylsibutramine (nor-nor-sibutramine), and the corresponding hydroxylated compounds, the hydroxylation taking place either on the cyclobutane or on the isopropyl chain. The excretion profiles of the different metabolites were also evaluated. From an analytical point of view, the method can be applied to different fields of forensic analytical toxicology, including anti-doping analysis. Although the lack of certified reference materials does not allow a precise determination of the limits of detection (LODs) of all the sibutramine metabolites, an estimation taking into account the response factor of similar compounds ensures that all metabolites are still clearly detectable in a range of concentrations between 10 and 50 ng/mL, thus satisfying the minimum required performance limits (MRPLs) of the World Anti-Doping Agency (WADA).
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号