首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Fluorescence Studies of Melanin by Stepwise Two-Photon Femtosecond Laser Excitation
Authors:Klaus Teuchner  Jürgen Ehlert  Wolfgang Freyer  Dieter Leupold  Peter Altmeyer  Markus Stücker  Klaus Hoffmann
Institution:(1) Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max-Born-Str. 2a, D-12489 Berlin, Germany;(2) Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max-Born-Str. 2a, D-12489 Berlin, Germany;(3) Department of Dermatology, St. Josef Hospital, Ruhr-University, D-44791 Bochum, Germany
Abstract:Fluorescence of synthetic melanin in the solvents H2O, KOH, ethylene glycol monomethyl ether, and dimethyl sulfoxide has been excited by two-photon absorption at 800 nm, using 120-fs pulses with photon flux densities of ge1027 cm–2.S–1. Compared to the one-photon (400-nm)-induced fluorescence of melanin, the overall spectral shape is red-shifted and shows a strong environment sensitivity. The decay of the two-photon-induced fluorescence (TPF) of melanin is three-exponential, with a shortest main component of about 200 ps. The results of the TPF studies in line with the unique light absorption property of melanin of a monotonously decreasing absorption spectrum between the near UV-region and the near infrared region indicate that the TPF is realized via stepwise absorption of two 800-nm photons. In comparison to the simultaneous absorption of two photons, the stepwise process needs lower photon flux densities to get a sufficient population of the fluorescent level. This stepwise process offers new possibilities of selective excitation of melanin in skin tissue in a spectral region where there is no overlap with any absorption of another fluorescent tissue component. The first results with different samples of excised human skin tissue (healthy, nevus cell nevi, malignant melanoma) suggest that fluorescence excited in this way yields information on malignant transformation.
Keywords:Melanin  two-photon excited fluorescence  femtosecond laser excitation  malignant melanoma  skin cancer diagnostics
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号