首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Structural and ac electrical properties of a newly synthesized single phase rare earth double perovskite oxide: Ba2CeNbO6
Authors:Chandrahas Bharti  TP Sinha
Institution:Department of Physics, Bose Institute, 93/1, Acharya Prafulla Chandra Road, Kolkata 700009, India
Abstract:A single phase rare earth double perovskite oxide Ba2CeNbO6 (BCN) is synthesized by solid-state reaction technique for the first time. The X-ray diffraction pattern of the sample at room temperature shows monoclinic structure, with the lattice parameters, a=5.9763 Å, b=5.975 Å and c=8.48 Å and β=90.04°. Impedance spectroscopy is used to study the ac electrical behavior of this material as a function of frequency (102-106 Hz) at various temperatures (30-450 °C). A relaxation is observed in the entire temperature range. Conduction mechanism is investigated by fitting the complex impedance data to Cole-Cole equation. Complex impedance plane plots show only one semicircular arc, indicating only the grain contribution of dielectric relaxation. The scaling behavior of imaginary part of electric modulus (M″) and imaginary part of electrical impedance (Z″) suggests that the relaxation describes the same mechanism at various temperatures. The frequency dependence of conductivity is interpreted in terms of the jump relaxation model and is fitted to Jonscher's power law. The values of dc conductivities extracted from the Jonscher power law varies from 2.79×10−7 to 3.5×10−5 Sm−1 with the increase in temperature from 100 to 450 °C. The activation energies (0.37 eV) extracted from M″(ω) and Z″(ω) peaks are found to follow the Arrhenius law.
Keywords:Double perovskite  Dielectric relaxation  Electrical properties  Power law
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号