首页 | 本学科首页   官方微博 | 高级检索  
     


Site-specific rate coefficients for reaction of OH with ethanol from 298 to 900 K
Authors:Carr Scott A  Blitz Mark A  Seakins Paul W
Affiliation:School of Chemistry, University of Leeds, Leeds, United Kingdom.
Abstract:The rate coefficients for reactions of OH with ethanol and partially deuterated ethanols have been measured by laser flash photolysis/laser-induced fluorescence over the temperature range 298-523 K and 5-100 Torr of helium bath gas. The rate coefficient, k(1.1), for reaction of OH with C(2)H(5)OH is given by the expression k(1.1) = 1.06 × 10(-22)T(3.58)?exp(1126/T) cm(3) molecule(-1) s(-1), and the values are in good agreement with previous literature. Site-specific rate coefficients were determined from the measured kinetic isotope effects. Over the temperature region 298-523 K abstraction from the hydroxyl site is a minor channel. The reaction is dominated by abstraction of the α hydrogens (92 ± 8)% at 298 K decreasing to (76 ± 9)% with the balance being abstraction at the β position where the errors are 2σ. At higher temperatures decomposition of the CH(2)CH(2)OH product from β abstraction complicates the kinetics. From 575 to 650 K, biexponential decays were observed, allowing estimates to be made for k(1.1) and the fractional production of CH(2)CH(2)OH. Above 650 K, decomposition of the CH(2)CH(2)OH product was fast on the time scale of the measured kinetics and removal of OH corresponds to reaction at the α and OH sites. The kinetics agree (within ±20%) with previous measurements. Evidence suggests that reaction at the OH site is significant at our higher temperatures: 47-53% at 865 K.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号