首页 | 本学科首页   官方微博 | 高级检索  
     


Capture CO2 from Ambient Air Using Nanoconfined Ion Hydration
Authors:Xiaoyang Shi  Hang Xiao  Prof. Klaus S. Lackner  Prof. Xi Chen
Affiliation:1. Department of Earth and Environmental Engineering, Columbia University, New York, NY, USA;2. School of Sustainable Engineering & Built Environment, Arizona State University, Tempe, AZ, USA
Abstract:Water confined in nanoscopic pores is essential in determining the energetics of many physical and chemical systems. Herein, we report a recently discovered unconventional, reversible chemical reaction driven by water quantities in nanopores. The reduction of the number of water molecules present in the pore space promotes the hydrolysis of CO32? to HCO3? and OH?. This phenomenon led to a nano‐structured CO2 sorbent that binds CO2 spontaneously in ambient air when the surrounding is dry, while releasing it when exposed to moisture. The underlying mechanism is elucidated theoretically by computational modeling and verified by experiments. The free energy of CO32? hydrolysis in nanopores reduces with a decrease of water availability. This promotes the formation of OH?, which has a high affinity to CO2. The effect is not limited to carbonate/bicarbonate, but is extendable to a series of ions. Humidity‐driven sorption opens a new approach to gas separation technology.
Keywords:air–  water interfaces  CO2 capture  free energy  ion hydration  molecular dynamics
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号