首页 | 本学科首页   官方微博 | 高级检索  
     


The microwave spectrum of a second N-gauche rotamer of allylamine
Authors:I. Botskor  H.D. Rudolph  G. Roussy
Affiliation:Faculty of Physics, University of Freiburg, Freiburg, Germany;Institute of Theoretical Chemistry, University of Nancy, Nancy, France
Abstract:The microwave spectra of the ground and five excited states of a second gauche rotamer of allylamine have been measured and assigned. Three of the excited states belong to the same mode, most probably the CC torsion, the second and third vibrational states present a symmetrical splitting due to tunneling effect. The spectrum was conclusively identified as due to the N-gauche, lone-electron-pair trans form by means of the N-quadrupole coupling constants and dipole moment components. The variation observed for the quadrupole coupling constants in the different vibrationally excited states was explained by a suitable model. The ground state constants are (in MHz) A0 = 23 957.05 ± 0.048, B0 = 4 229.96 ± 0.025, C0 = 4 154.91 ± 0.025, χaa = ? 1.48 ± 0.04, χbb - χcc = ? 1.42 ± 0.04, and (in D) ∥μa∥ = 0.766 ± 0.010, ∥μb∥ = 0.700 ± 0.005, ∥μc∥ = 0.290 ± 0.020.The excited states of the N-cis, lone-electron-pair trans form were also measured and assigned; two of these states appear to belong to the CC torsion as indicated by their intertial defects. The potential hindering the internal CC rotation was calculated using the relative intensity data of the N-cis and N-gauche forms as well as the tunneling splittings. A three-term cosine potential was fitted to the data yielding (in cm?1) V1 = ? 77 ± 85, V2 = 170 ± 126, V3 = 663 ± 95. The Dennison-Uhlenbeck potential was used for an approximate calculation of the N-trans barrier separating the two identical N-gauche forms. The barrier obtained was 1.9 ± 0.3 Kcal/mole.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号