首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Statistical hadronization model and transverse momentum spectra of hadrons in high energy collisions
Authors:F Becattini  G Passaleva
Institution:(1) University of Florence, Dipt. di Fisica, Via G. Sansone 1, 50019, Sesto F.no, Firenze, Italy , IT;(2) INFN Sezione di Firenze, Via G. Sansone 1, 50019, Sesto F.no, Firenze, Italy , IT
Abstract:A detailed analysis of transverse momentum spectra of several identified hadrons in high energy collisions within the canonical framework of the statistical model of hadronization is performed. The study of particle momentum spectra requires an extension of the statistical model formalism used to handle particle multiplicities, which is described in detail starting from a microcanonical treatment of single hadronizing clusters. Also, a new treatment of extra strangeness suppression is presented which is based on the enforcement of fixed numbers of pairs in the primary hadrons. The considered center-of-mass energies range from to 30 GeV in hadronic collisions ( and Kp) and from 15 to 35 GeV in collisions. The effect of the decay chain following hadron generation is accurately and exhaustively taken into account by a newly proposed numerical method. The exact conservation at low energy and the increasing hard parton emission at high energy bound the validity of the presently taken approach within a limited center-of-mass energy range. However, within this region, a clear consistency is found between the temperature parameter extracted from the present analysis and that obtained from fits to average hadron multiplicities in the same collision systems. This finding indicates that in the hadronization process the production of different particle species and their momentum spectra are two closely related phenomena governed by one parameter. Received: 31 October 2001 / Published online: 15 February 2002
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号