Abstract: | Magnetic Resonance Imaging (MRI) uses non-ionizing radiations and is safer as compared to CT and X-ray imaging. MRI is broadly used around the globe for medical diagnostics. One main limitation of MRI is its long data acquisition time. Parallel MRI (pMRI) was introduced in late 1990's to reduce the MRI data acquisition time. In pMRI, data is acquired by under-sampling the Phase Encoding (PE) steps which introduces aliasing artefacts in the MR images. SENSitivity Encoding (SENSE) is a pMRI based method that reconstructs fully sampled MR image from the acquired under-sampled data using the sensitivity information of receiver coils. In SENSE, precise estimation of the receiver coil sensitivity maps is vital to obtain good quality images. Eigen-value method (a recently proposed method in literature for the estimation of receiver coil sensitivity information) does not require a pre-scan image unlike other conventional methods of sensitivity estimation. However, Eigen-value method is computationally intensive and takes a significant amount of time to estimate the receiver coil sensitivity maps. This work proposes a parallel framework for Eigen-value method of receiver coil sensitivity estimation that exploits its inherent parallelism using Graphics Processing Units (GPUs). We evaluated the performance of the proposed algorithm on in-vivo and simulated MRI datasets (i.e. human head and simulated phantom datasets) with Peak Signal-to-Noise Ratio (PSNR) and Artefact Power (AP) as evaluation metrics. The results show that the proposed GPU implementation reduces the execution time of Eigen-value method of receiver coil sensitivity estimation (providing up to 30 times speed up in our experiments) without degrading the quality of the reconstructed image. |