首页 | 本学科首页   官方微博 | 高级检索  
     


Hydrogen activation on Mo-based sulfide catalysts,a periodic DFT study
Authors:Travert Arnaud  Nakamura Hiroyuki  van Santen Rutger A  Cristol Sylvain  Paul Jean-François  Payen Edmond
Affiliation:Schuit Institute of Catalysis, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands. arnaud.travert@ismra.nl
Abstract:Hydrogen adsorption on Mo[bond]S, Co[bond]Mo[bond]S, and Ni[bond]Mo[bond]S (10 1 macro 0) surfaces has been modeled by means of periodic DFT calculations taking into account the gaseous surrounding of these catalysts in working conditions. On the stable Mo[bond]S surface, only six-fold coordinated Mo cations are present, whereas substitution by Co or Ni leads to the creation of stable coordinatively unsaturated sites. On the stable MoS(2) surface, hydrogen dissociation is always endothermic and presents a high activation barrier. On Co[bond]Mo[bond]S surfaces, the ability to dissociate H(2) depends on the nature of the metal atom and the sulfur coordination environment. As an adsorption center, Co strongly favors molecular hydrogen activation as compared to the Mo atoms. Co also increases the ability of its sulfur atom ligands to bind hydrogen. Investigation of surface acidity using ammonia as a probe molecule confirms the crucial role of sulfur basicity on hydrogen activation on these surfaces. As a result, Co[bond]Mo[bond]S surfaces present Co[bond]S sites for which the dissociation of hydrogen is exothermic and weakly activated. On Ni[bond]Mo[bond]S surfaces, Ni[bond]S pairs are not stable and do not provide for an efficient way for hydrogen activation. These theoretical results are in good agreement with recent experimental studies of H(2)[bond]D(2) exchange reactions.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号