首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Influences of Bi2O3 additive on the microstructure, permeability, and power loss characteristics of Ni-Zn ferrites
Authors:Hua Su  Xiaoli Tang  Huaiwu Zhang  Lijun Jia  Zhiyong Zhong
Institution:State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract:Nickel-zinc ferrite materials containing different Bi2O3 concentrations have been prepared by the conventional ceramic technique. Micrographs have clearly revealed that the Bi2O3 additive promoted grain growth. When the Bi2O3 content reached 0.15 wt%, a dual microstructure with both small grains (<5 μm) and some extremely large grains (>50 μm) appeared. With higher Bi2O3 content, the samples exhibited a very large average grain size of more than 30 μm. The initial permeability gradually decreased with increasing Bi2O3 content. When the Bi2O3 content exceeded 0.15 wt%, the permeability gradually decreased with frequency due to the low-frequency resonance induced by the large grain size. Neither the sintering density nor the saturation magnetization was obviously influenced by the Bi2O3 content or microstructure of the samples. However, power loss (Pcv) characteristics were evidently influenced. At low flux density, the sample with 0.10 wt% Bi2O3, which was characterized by an average grain size of 3-4 μm and few closed pores, displayed the lowest Pcv, irrespective of frequency. When the flux density was equal to or greater than the critical value of 40 mT, the sample with 0.20 wt% Bi2O3, which had the largest average grain size, displayed the lowest Pcv.
Keywords:Nickel-zinc ferrite  Permeability  Microstructure  Power loss
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号