首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of gate length and dielectric thickness on ion and fluid transport in a fluidic nanochannel
Authors:Singh Kunwar Pal  Kumar Manoj
Affiliation:School of Physics, University of Sydney, New South Wales, 2006, Australia. k_psingh@yahoo.com
Abstract:We have simulated the effect of gate length and dielectric thickness on ion and fluid transport in a fluidic nanochannel with negative surface charge on its walls. A short gate is unable to induce significant cation enrichment in the nanochannel and ion current is controlled mostly by cation depletion at positive gate potentials. The cation enrichment increases with increasing gate length and/or decreasing dielectric thickness due to higher changes induced in the surface charge density and zeta-potential. Thus, long gates and thin dielectric layers are more effective in controlling ion current. The model without Navier-Stokes equations is unable to correctly predict phenomena such as cation enrichment, increase in channel conductivity, and decreasing electric field. Body force and induced fluid velocity decrease slowly and then rapidly with gate potentials. The effectiveness of ion current control by a gate reduces with increasing surface charge density due to reduced fractional change in zeta-potential.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号