首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Preparation of thermosetting polyurethane nanocomposites by montmorillonite modified with a novel intercalation agent
Authors:Jin‐Cheng Wang  Yue‐Hui Chen  Ren‐Jie Chen
Institution:1. College of Chemistry and Chemical Engineering, Department of Polymeric Material and Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of ChinaCollege of Chemistry and Chemical Engineering, Department of Polymeric Material and Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China;2. College of Chemistry and Chemical Engineering, Department of Polymeric Material and Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China
Abstract:A novel thermosetting polyurethane (TSPU)/organic montmorillonite (OMMT) nanocomposite has been synthesized. N‐diamino octadecyl trimethyl ammonium chloride (DODTMAC) was used as an intercalation agent to treat Na+‐montmorillonite (MMT) and form a novel kind of OMMT. Fourier transform infrared spectroscopy (FT‐IR), wide angle X‐ray diffraction (WAXD), and thermogravimetric analysis (TGA) data indicated that the MMT was successfully intercalated by this intercalation agent, as evidenced by the fact that the basal spacing of MMT galleries was expanded from 1.5 to 3.2 nm. This OMMT was used to prepare the TSPU nanocomposites. Both the reinforcing and compatibilizing performance of the filler were investigated. Tensile tests showed that the tensile strength of TSPU/OMMT‐4 was the highest, and was about 3.62 times higher than that of the pure TSPU, and also the elongation at break showed an enhancement. Differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) measurements illustrated that the glass transition temperature of the TSPU/OMMT‐4 nanocomposite was improved from 0.5 to 6.5 °C, which corresponded to the restriction of the soft segments of TSPU. The highest initial and center temperatures of TSPU/OMMT‐4 obtained from TGA were due to the highest retard effect of the TSPU molecular chains. WAXD studies showed that the formation of the nanocomposites in all the cases with the almost disappearance of the peaks corresponding to the basal spacing of MMT. SEM and TEM were used to investigate the morphologies of the TSPU/OMMT‐4 nanocomposite, and demonstrated that the nanocomposite was comprised of a well dispersion of a mixture of intercalated and exfoliated silicate layers throughout the matrix. It was proposed that the nano‐reinforcing effect caused by the well‐dispersed silicate layers might reduce the amount and size of voids and increase the length of the crack‐spreading path during tensile drawing. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 519–531, 2007.
Keywords:nanocomposite  organic montmorillonite  thermosetting polyurethane
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号