首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Olefin cis-dihydroxylation versus epoxidation by non-heme iron catalysts: two faces of an Fe(III)-OOH coin
Authors:Chen Kui  Costas Miquel  Kim Jinheung  Tipton Adrianne K  Que Lawrence
Institution:Department of Chemistry, Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN 55455, USA.
Abstract:The oxygenation of carbon-carbon double bonds by iron enzymes generally results in the formation of epoxides, except in the case of the Rieske dioxygenases, where cis-diols are produced. Herein we report a systematic study of olefin oxidations with H(2)O(2) catalyzed by a group of non-heme iron complexes, i.e., Fe(II)(BPMEN)(CH(3)CN)(2)](2+) (1, BPMEN = N,N'-dimethyl-N,N'-bis(2-pyridylmethyl)-1,2-diaminoethane) and Fe(II)(TPA)(CH(3)CN)(2)](2+) (4, TPA = tris(2-pyridylmethyl)amine) and their 6- and 5-methyl-substituted derivatives. We demonstrate that olefin epoxidation and cis-dihydroxylation are different facets of the reactivity of a common Fe(III)-OOH intermediate, whose spin state can be modulated by the electronic and steric properties of the ligand environment. Highly stereoselective epoxidation is favored by catalysts with no more than one 6-methyl substituent, which give rise to low-spin Fe(III)-OOH species (category A). On the other hand, cis-dihydroxylation is favored by catalysts with more than one 6-methyl substituent, which afford high-spin Fe(III)-OOH species (category B). For catalysts in category A, both the epoxide and the cis-diol product incorporate (18)O from H(2)(18)O, results that implicate a cis-H(18)O-Fe(V)=O species derived from O-O bond heterolysis of a cis-H(2)(18)O-Fe(III)-OOH intermediate. In contrast, catalysts in category B incorporate both oxygen atoms from H(2)(18)O(2) into the dominant cis-diol product, via a putative Fe(III)-eta(2)-OOH species. Thus, a key feature of the catalysts in this family is the availability of two cis labile sites, required for peroxide activation. The olefin epoxidation and cis-dihydroxylation studies described here not only corroborate the mechanistic scheme derived from our earlier studies on alkane hydroxylation by this same family of catalysts (Chen, K.; Que, L, Jr. J. Am. Chem. Soc. 2001, 123, 6327) but also further enhance its credibility. Taken together, these reactions demonstrate the catalytic versatility of these complexes and provide a rationale for Nature's choice of ligand environments in biocatalysts that carry out olefin oxidations.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号