摘 要: | 为了消除光学相干层析成像(OCT)系统中存在的大量散斑噪声,引入了稳健性主成分分析(RPCA)算法。通过分析生物组织在OCT中散斑的产生机制,从而了解OCT系统中散斑噪声的特点。结合OCT系统自身的特点,证明基于RPCA算法的低秩矩阵恢复模型对OCT系统消除散斑噪声有良好的适用性。利用RPCA算法,可以得到将OCT原始图像分解成散斑噪声图像和样品截面图像的最佳估计。RPCA算法能在分离散斑噪声的同时,保留样品自身结构的散斑图样,有效地避免了伪影的生成。通过对比处理后和处理前的图像,结果表明,RPCA算法能够有效地抑制散斑噪声,提高信噪比,改善OCT图像效果。
|