首页 | 本学科首页   官方微博 | 高级检索  
     


Bias-dependent timing jitter of 1-GHz sinusoidally gated InGaAs/InP avalanche photodiode
Affiliation:1.School of Physics, Beijing Institute of Technology, Beijing 100081, China;2.University of Chinese Academy of Sciences, Beijing 100049, China;3.Key Laboratory of Electronics and Information Technology for Space Systems, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China
Abstract:We characterized the dependence of the timing jitter of an InGaAs/InP single-photon avalanche diode on the excess bias voltage (Vex) when operated in 1-GHz sinusoidally gated mode. The single-photon avalanche diode was cooled to -30 degrees Celsius. When the Vex is too low (0.2 V-0.8 V) or too high (3 V-4.2 V), the timing jitter is increased with the Vex, particularly at high Vex. While at middle Vex (1 V-2.8 V), the timing jitter is reduced. Measurements of the timing jitter of the same avalanche diode with pulsed gating show that this effect is likely related to the increase of both the amplitude of the Vex and the width of the gate-on time. For the 1-GHz sinusoidally gated detector, the best jitter of 93 ps is achieved with a photon detection efficiency of 21.4% and a dark count rate of ~2.08×10-5 per gate at the Vex of 2.8 V. To evaluate the whole performance of the detector, we calculated the noise equivalent power (NEP) and the afterpulse probability (Pap). It is found that both NEP and Pap increase quickly when the Vex is above 2.8 V. At 2.8-V Vex, the NEP and Pap are ~2.06×10-16 W/Hz1/2 and 7.11%, respectively. Therefore, the detector should be operated with Vex of 2.8 V to exploit the fast time response, low NEP and low Pap.
Keywords:timing jitter  avalanche photodiode  excess bias voltage  single-photon detector  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号