首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Influence of tip geometry on the spatial resolution of tip enhanced Raman mapping
Institution:1. Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2. College of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China
Abstract:In 2013, a breakthrough experiment pushed the Raman mapping of molecules via the tip-enhanced Raman scattering (TERS) technique to a sub-nanometer spatial resolution, going into the single-molecule level. This surprising result was well explained by accounting for the critical role of elastic molecule Rayleigh scattering within a plasmonic nanogap in enhancing both the localization and the intensity level of the Raman scattering signal. In this paper, we theoretically explore the influence of various geometric factors of the TERS system on the spatial resolution of Raman mapping, such as the tip curvature radius, tip conical angle, tip-substrate distance, and tip-molecule vertical distance. This investigation can help to find out the most critical geometric factor influencing the spatial resolution of TERS and march along in the right direction for further improving the performance of the TERS system.
Keywords:tip-enhanced Raman scattering  Rayleigh scattering  surface plasmon resonance  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号