首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Lubricant film flow and depletion characteristics at head/disk storage interface
Institution:School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 China
Abstract:The characteristics of lubricant film at head/disk interface (HDI) are essential to the stability of hard disk drives. In this study, the theoretical models of the lubricant flow and depletion are deduced based on Navier-Stokes (NS) and continuity equations. The air bearing pressure on the surface of the lubrication film is solved by the modified Reynolds equation based on Fukui and Kaneko (FK) model. Then the lubricant film deformations for a plane slider and double-track slider are obtained. The equation of lubricant film thickness is deduced with the consideration of van der Waals force, the air bearing pressure, the surface tension, and the external stresses. The lubricant depletion under heat source is simulated and the effects of different working conditions including initial thickness, flying height and the speed of the disk on lubricant depletion are discussed. The main factors that cause the lubricant flow and depletion are analyzed and the ways to reduce the film thickness deformation are proposed. The simulation results indicate that the shearing stress is the most important factor that causes the thickness deformation and other terms listed in the equation have little influence. The thickness deformation is dependent on the working parameter, and the thermal condition evaporation is the most important factor.
Keywords:lubricant film  depletion  deformation characteristics  head/disk interface  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号