首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Energy Conversion Efficiency in Low- and Atmospheric-Pressure Plasma Polymerization Processes,Part II: HMDSO
Authors:Dirk Hegemann  Bernard Nisol  Sean Watson  Michael R Wertheimer
Institution:1.Empa, Swiss Federal Laboratories for Materials Science and Technology,Plasma & Coating Group,St. Gallen,Switzerland;2.Groupe des Couches Minces (GCM), Department of Engineering Physics,Polytechnique Montréal,Montreal,Canada
Abstract:For at least forty years, there has been an interest to correlate the structure of plasma polymer coatings with fabrication parameters during deposition, most particularly with the energy input per monomer molecule, \( E_{\text{m}} \). In our two laboratories, we have developed methods for measuring \( E_{\text{m}} \) (or somewhat equivalent activation energy, \( E_{\text{a}} \)) in low- (LP) and atmospheric-pressure (AP) discharge plasmas. We earlier proposed energy conversion efficiency, ECE, as a new parameter which permits direct comparison of LP and AP experiments. This is done here for the case of a much-studied organosilicon precursor (monomer), hexamethyl-disiloxane. “Critical” \( E_{\text{m}} \) (or \( E_{\text{a}} \)) values that demarcate ECE regimes separating different fragmentation/reaction mechanisms are found to agree remarkably well, and to correlate with specific mechanisms. Furthermore, deposition rates, and structural (for example, “organic/inorganic” content ratio) characteristics are seen to display very similar behaviors, despite additional drastically differing fabrication conditions like pure or highly diluted (in Ar carrier gas) monomer feed in the LP and AP cases, respectively.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号